RHIC Computing Facility

Eric Lançon August 23, 2016

a passion for discovery

Outline

- Status of RCF, synergies with ATLAS Tier-1
- Performance in recent RHIC runs
- Future technological and data challenges
- Synergies with BNL Computing Initiative
- B725 infrastructure project

RCF today

Capacities as of today

55k CPU cores

3% HPC of capacity, will increase in the next months

~45 PB of disk storage

of various technologies

~80 PB of tape storage

- 4th HPSS site worldwide
- first within the US⁽¹⁾

Status of RCF

- RCF performed well during 2016 run
- Resources are ~fully utilised
- Hardware (CPU) is getting old, migration to new tape generation needed (space in HPSS)
- Increase of resources needed in the next years

Performance in 2016

No issue in data transfer

Jul

Performance in 2016

No issue in writing RAW data to tape

High Throughput Parallel Archiving

RHIC RUN 16 - STAR

Performance in 2016

- Two distinct computing farms of equal size, one for PHENIX, one for STAR
- Storage distributed on computing nodes
 - Reconstruction jobs of experience A cannot run on farm of experience B
- STAR farm almost continuously saturated while PHENIX farm is not

CPU usage of the farms

- PHENIX farm used by STAR analysis jobs when no PHENIX activity
 - Optimisation of batch system (Condor) performed by RCF,
 - STAR analysis workflow optimisation to be done (too long jobs)
- Lesson for the future
 - Computing models (workflow management, data organisation,...) and technological choices (storage, CPU,...) of experiments should not be too different in order to benefit from a global pool of resources

Synergy with ATLAS Tier-1

- Economy of scale (operation, purchase,...)
- Common procedures and configurations (resilience)
- Common tools (batch system, storage, network)
- Expertise from RCF benefits to ATLAS (and vis versa)
- Access to Grid and cloud computing expertise developed in ATLAS

...

Synergy with ATLAS Tier-1

- 13.6 FTE for RHIC
 - Support from ITD included
 - 6 people are 100% RHIC (storage, infrastructure, user support,...)
 - 8 people 50/50 (batch, system administration & configuration,...)
- About the right size of effort provided new RHIC experiments do not develop complex computing models

Future technological and data challenges

Future of computing is multi-core

- New hardware are multi-core 16, 32, 64,.... with less and less memory per core
- Could software of RHIC experiments be multi-core?
- Is it worst the effort for existing experiments?

Object store technology

- ATLAS will migrate to Ceph (2-5 years)
- To be considered for sPHENIX and eRHIC
- RHIC hardware is getting old, ~25% older than 5 years

Tape technology

- 2 generations behind in tape technology
- Only one copy of RAW date on tape

Data preservation

Access to data and software after data taking

Tape migration

- Need to migrate archived data to new tape technology (LTO-7)
 - ~7 more capacity / tape
 - ~3 time faster
- LTO-7 tape drives cannot read LTO-4 and older types
 - Data on LTO-4 copied onto LTO-7
- 2 copies of RAW data will be made in the migration process
 - Today 1 copy of RAW data

CPU & Disk resources for next years

- Today's resources just match anticipated needs from 2014 S&T review
- 25% of capacity is older than 5 years and need to be replaced
- Projected 2017 needs (including replacement)
 ~1.6 what is currently installed
- Projection did not include running in 2017
- Real 2017 needs ~1.8 current capacity

Computational Science Initiative: CSI

- CSI: Integrating dataintensive science expertise and investments across the Laboratory to tackle "big data" challenges
 - Leverage investments across multiple programs
 - Patterns: universities (Columbia, Cornell, New York University, Stony Brook, and Yale) and companies including IBM Research.
- SDCC: Scientific Data and Computing Center of CSI

RHIC and ATLAS Computing Facility operates SDCC

- SDCC is the computing center of CSI, BNL's Computational Science Initiative
- It is operated by RACF
- It includes components from
 - Laboratory's Institutional Cluster
 - CFN (Center for Functional Nano-materials)
 - Atmospheric Radiation Measurement
 - USQCD
 - ...

SDCC evolution over the next months

- Institutional Cluster (IC)
 - Fall 2016: 3'888 cores
 (Intel Xeon + Nvidia K80 GPU + InfiniBand)
 - 2 x mid-2017
- Intel Knights Landing (KNL) cluster
 - Fall 2016 : 9'000 cores (Intel Xeon Phi + Omni-Path)
 - for RBRC (RIKEN and BNL Research Center)
 - and for CSI partners
- USQCD Cluster
 - Configuration TBD

End of 2016

70k cores

HPC: 22%

2017

Brookhaven Science Associat

BROOKHAVEN NATIONAL LABORATORY

Synergies with BNL Computing Initiative

- CSI is purchasing or complementing purchases in the area of HPC computing (multi-core interconnected nodes)
 - Institutional cluster (Fall 2016, 2x 2017)
 - Knight Landings (KNL) Intel farm (Fall 2016). Initiated by BNL QCD group and RIKEN, CSI doubled the capacity
 - These resources will be made available to RHIC program in opportunistic mode
 - May add 10% to RHIC resources?
 - Issue : manpower to port RHIC codes on KNL?
- Leverage on expertise in data processing & storage technologies developed for RHIC and ATLAS
- Common network, CSI interested in usage of HPSS

Computing room(s) in 2017

OLD installations

Insufficient raised floor (cannot accommodate cooling for denser new equipments)

Limited space

15k SqF

New computing room needed

Core Facility Revitalisation – Conceptual Design

CFR – Preliminary Schedule

Brookhaven Science Associates

Preliminary CFR Funding Analysis - 1 Yr CR 2017 (Renovation Alternative)

23

2024---

Program TBD

CFR Design – An Incremental Approach

Power

- Day-one capability (2021) 2.4 MW IT power (dedicated computing power). This is approximately double current RACF IT power.
- Provide provision for future 1.2 MW IT power increments to 6MW Max.

Cooling

- Day-one cooling capability to support 2.4 MW IT power
- Provide provision for future 1.2 MW IT power deployments

Space

- Day-one Accommodate approximately 33% footprint expansion (Racks) within defined spaces.
- Day-one Accommodate approximately 3,500 SF additional, unassigned space.
- Provide opportunity for future (long term) growth within the balance of the 725 facility. Both computing and offices.

Summary

RCF performed remarkably well during Run 16

- Needs for replacement of old hardware, new tape generation & resources needs for 2017 and beyond
 - difficult with level of current budget
- Plan being developed for migrating facility to state of the art computing room in 2021